jueves, 13 de diciembre de 2012

Aplicaciones tecnologicas de la emision electronica de los atomos

NTRODUCCION:
El átomo es la expresión mas pequeña de la materia y a partir de ella se han logrado hacer diversas investigaciones y de esa manera se han hecho grandes descubrimientos acerca de este, utilizándolos se han logrado grandes avances en la ciencia y la tecnología.
En el desarrollo tecnológico la emisión electrónica de los átomos puede ser de verdadera utilidad como podremos comprobar a lo largo de este ensayo tiene muy diversas utilidades y, sabiendo utilizarlas correctamente podemos obtener diversos beneficios. 
Para poder realizar estos adelantos fue necesario realizar las investigaciones adecuadas, por lo tanto hay que recordar que la base de todos estos fue planteada por científicos y posteriormente desarrollada en caso de no haber sido concluidos.

DESARROLLO:
El trazado isotópico en biología y en medicina.
Los diferentes isotopos de un elemento tienen las mismas propiedades químicas. El reemplazo de uno por otro en una molécula no modifica, por consiguiente, la función de la misma. Sin embargo, la radiación emitida permite detectarla, localizarla, seguir su movimiento e, incluso, dosificarla a distancia. El trazado isotópico ha permitido estudiar así, sin perturbarlo, el funcionamiento de todo lo que tiene vida, de la célula al organismo entero. En biología, numerosos adelantos realizados en el transcurso de la segunda mitad del siglo XX están vinculados a la utilización de la radioactividad: funcionamiento del genoma (soporte de la herencia), metabolismo de la célula, fotosíntesis, transmisión de mensajes químicos (hormonas, neurotransmisores) en el organismo.                                                                                                       

Principios de Radiactividad

La radioactividad ha sido un término, que aun desconociéndose la naturaleza de su origen, en ocasiones, genera temor. Muchas de las veces, el temor que se ha generado sobre el uso de los materia radioactivos no es producto solo de la ignorancia que se tiene sobre los materiales, su definición, características de los materiales, control, entre otros, sino de los graves problemas a la salud y a la propia naturaleza que se han generado por el uso de materiales que tienen esta propiedad y de la grave forma en que se controlan estos materiales.
Es evidente en nuestra sociedad que los avances tecnológicos y científicos han marcado una nueva forma de vivir en sociedad. La salud humana no podría estar ajena a estos cambios, en el caso de las técnicas de medición y control utilizados mediante materiales radioactivos han permitido prolongar la vida y en algunas ocasiones no solo prolongar sino preservar, es tan así que se han abierto áreas como la radioterapia para tratar enfermedades como el cáncer o tumores.

INTRODUCCION
¿Qué es la radiactividad? La radiactividad o radioactividad es un fenómeno físico por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros.

Configuracion electronica de los elementos y su ubicacion en la clasificacion periodica


Tabla periódica, configuración electrónica y propiedades periódicas
El Átomo
El primero en hablar sobre las partículas más diminutas que constituyen la materia, fue Demócrito (460 – 370 a.C.), luego de cientos de años, John Dalton retomó la idea del átomo, realizando una teoría la cual goza de aciertos y errores, pero siendo esta un gran adelanto. Posteriormente, Thompson, descubrió el electrón, Rutherford el protón y James Chadwick el neutrón.
Estructura Básica del Átomo
El átomo, para Thompson consistía en un núcleo con los electrones insertados a su alrededor, tal como un budín de pasas. Para Rutherford, comprendía un sistema planetario con los electrones siguiendo orbitas alrededor del núcleo. Hoy en día, el átomo esta constituido principalmente por el núcleo, el cual posee protones (carga positiva) y neutrones (sin carga), alrededor de este núcleo se disponen los electrones (carga negativa) los cuales están moviéndose interminablemente y en forma caótica, generando una nube difusa.
Configuración Electrónica
Los cuatro números cuánticos (n, l, m, s) permiten identificar completamente un electrón en cualquier orbital de cualquier átomo. Si analizamos el átomo de hidrógeno, vemos que representa un sistema muy sencillo porque sólo contiene un electrón, que se ubica en el orbital “s” del primer nivel de energía. Esta situación es diferente para átomos que tienen más de un electrón. Para conocer la distribución de electrones en los distintos orbitales (lugares donde es más probable encontrar un electrón) en el interior de un átomo, se desarrolló la configuración electrónica. En ella se indica claramente el nivel de energía, los orbitales ocupados y el número de electrones de un átomo.

La configuración electrónica del átomo de hidrógeno es: 1s1

Para átomos más grandes, la configuración electrónica se efectúa según tres  principios:

- Principio de mínima energía: Las configuraciones electrónicas de los elementos se obtienen por ocupación sucesiva de los niveles desde el primer nivel de menor energía (1s). A medida que los niveles se llenan, se van ocupando los niveles superiores. El orden de energía creciente puede ser recordado mediante el siguiente esquema:
Orden de llenado de los orbitales
Figura 1: Orden de llenado de los orbitales

- Principio de exclusión de Pauli: en cada orbital puede haber un máximo de dos electrones los cuales deben tener espín contrario.
- Por otra parte, los orbitales s, p, d y f pueden ser ocupados hasta por un total de
2, 6, 10 y 14 electrones respectivamente, pero cuando los subniveles están parcialmente llenos, los electrones se distribuyen de manera que presentan el máximo número de espines con el mismo valor o bien sus espines deben ser paralelos. Este es el Principio de máxima multiplicidad de Hund, que también puede enunciarse así: los electrones se distribuyen ocupando los orbitales disponibles en un solo sentido (spin) y luego con los que tienen espín opuesto, completando de esta manera el llenado orbital.
A modo de ejemplo, si queremos representar la configuración electrónica del átomo de nitrógeno, que tiene un total de siete electrones, se deben asignar dos electrones al subnivel “s” del nivel 1, esto es, 1s2, con lo que el nivel 1 queda completo. ¿Cómo se ubican los cinco electrones restantes?
Según el principio de exclusión de Pauli, cada orbital 2s, 2px, 2py, 2pz puede contener como máximo dos electrones de espín opuesto. Una vez que se ha llenado el orbital 2s se prosigue con los orbitales 2p, que poseen una energía ligeramente superior.
Para la siguiente figura: ¿Cuál de los ordenamientos corresponde al de menor energía para el átomo de N?
Posibles configuraciones para el átomos de N

Principio de maxima multiplicidad de Hund

La regla de Hund es una regla empírica obtenida por Friedrich Hund en el estudio de los espectros atómicos que enuncia lo siguiente:
Al llenar orbitales de igual energía (los tres orbitales p, los cinco d, o los siete f) los electrones se distribuyen, siempre que sea posible, con sus espines paralelos, es decir, que no se cruzan. La partícula subatomica es más estable (tiene menos energía) cuando tiene electrones desapareados (espines paralelos) que cuando esos electrones están apareados (espines opuestos o antiparalelos).
También se denomina así a la regla de máxima multiplicidad de Hund:
Cuando varios electrones están descritos por orbitales degenerados, la mayor estabilidad energética es aquella en donde los espines electrónicos están desapareados (correlación de espines).
Para entender la regla de Hund, hay que saber que todos los orbitales en una subcapa deben estar ocupados por lo menos por un electrón antes de que se le asigne un segundo. Es decir, todos los orbitales deben estar llenos y todos los electrones en paralelo antes de que un orbital gane un segundo electrón. Y cuando un orbital gana un segundo electrón, éste deberá estar apareado del primero (espines opuestos o antiparalelos). Por ejemplo:
   3 electrones en el orbital 2p;   px1 py1 pz1 (vs) px2 py1 pz0
      (px2 py1 pz0 = px0 py1 pz2 = px1 py0 pz2= px2 py0 pz1=....)
Así, los electrones en un átomo son asignados progresivamente, usando una configuración ordenada con el fin de asumir las condiciones energéticas más estables. El principio de Aufbau explica las reglas para llenar orbitales de manera de no violar la Regla de Hund.
También se puede decir de otra forma :
Al existir orbitales equivalentes, primero se completa con electrones el máximo posible de los mismos y luego se emparejan.

Principio de exclusion de Pauli

El principio de exclusión de Pauli fue un principio cuántico enunciado por Wolfgang Ernst Pauli en 1925. Establece que no puede haber dos fermiones con todos sus números cuánticos idénticos (esto es, en el mismo estado cuántico de partícula individual) en el mismo sistema cuántico ligado.1 Formulado inicialmente como principio, posterioremente se comprobó que era derivable de supuestos más generales: de hecho, es una consecuencia del teorema de la estadística del spin

Introducción

El principio de exclusión de Pauli sólo es aplicable a fermiones, esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero. Son fermiones, por ejemplo, los electrones y los quarks (estos últimos son los que forman los protones y los neutrones). El principio de exclusión de Pauli rige, así pues, muchas de las características distintivas de la materia. En cambio, partículas como el fotón y el (hipotético) gravitón no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres.
Es sencillo derivar el principio de Pauli, basándonos en el teorema espín-estadística aplicado a partículas idénticas. Los fermiones de la misma especie forman sistemas con estados totalmente antisimétricos, lo que para el caso de dos partículas significa que:
 |\psi(x) \psi'(x')\rangle = - |\psi'(x)\psi(x')\rangle
(La permutación de una partícula por otra invierte el signo de la función que describe al sistema). Si las dos partículas ocupan el mismo estado cuántico |\psi\rangle, el estado del sistema completo es |\psi\psi\rangle. Entonces,
 |\psi(x)\psi(x')\rangle = - |\psi(x')\psi(x)\rangle = 0 \; \hbox{(ket nulo)}
así que este caso no puede darse porque en ese caso el ket anterior no representa un estado físico. Este resultado puede generalizar por inducción al caso de más de dos partículas.

[editar]Consecuencias

El caso más conocido por su amplia utilización en el campo de la química y la física átomica es en el sistema cuántico del átomo de Schrödinger siendo los fermiones los electrones. Por ello es la versión más conocida de este lema: "Dos electrones en la corteza de un átomo no pueden tener al mismo tiempo los mismos números cuánticos". Esto explica que los electrones se distribuyan en capas alrededor de un núcleo y que por tanto los átomos con más electrones ocupen un tamaño mayor, además de que no sea posible interpenetrar de cierta manera las nubes electrónicas de los átomos, este hecho explica de hecho la impenetrabilidad de la materia ordinaria macroscópica.
Otro fenómeno físico del que es responsable el principio de Pauli es el ferromagnetismo, en el que el principio de exclusión implica una energía de intercambio que induce al alineamiento paralelo de electrones vecinos (que clásicamente se alinearían antiparalelamente).

Principio de Aufbau o de construccion


El principio de Aufbau contiene una serie de instrucciones relacionadas a la ubicación de electrones en los orbitales de unátomo. El modelo, formulado por el físico Niels Bohr, recibió el nombre de Aufbau (del alemán Aufbauprinzip: principio de construcción) en vez del nombre del científico. También se conoce popularmente con el nombre de regla del serrucho.
Los orbitales se 'llenan' respetando la regla de Hund, que dice que ningún orbital puede tener dos orientaciones del giro del electrón sin antes de que los restantes números cuánticos magnéticos de la misma subcapa tengan al menos uno. Se comienza con el orbital de menor energía.
Primero debe llenarse el orbital 1s (hasta un máximo de dos electrones), esto de acuerdo con el número cuántico l.
Seguido se llena el orbital 2s (también con dos electrones como máximo).
La subcapa 2p tiene tres orbitales degenerados en energía denominados, según su posición tridimensional, 2px, 2py, 2pz. Así, los tres orbitales 2p puede llenarse hasta con seis electrones, dos en cada uno. De nuevo, de acuerdo con la regla de Hund, deben tener todos por lo menos un electrón antes de que alguno llegue a tener dos.
Y así, sucesivamente:
1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6
El principio de exclusión de Pauli nos advierte, además, que ningún electrón en un átomo puede tener la misma combinación de números cuánticos como descripción de su estado energético con macromoleculas de hidrógeno, sin embargo se planteó que el átomo era una partícula que no existió.

[editar]Regla del serrucho o de las diagonales

Para llenar los orbitales correctamente, siga la dirección de la flecha tal como se muestra en la gráfica. Primero 1s, luego 2s, después sube a 2p y baja 3s, 3p y baja a 4s. En este punto, el siguiente nivel de energía más bajo no es 4p, sino que sube a 3d para luego bajar a 4p y 5s. Y así, sucesivamente.
Se le llama la regla del serrucho, debido a la acción de subir y bajar del modo descrito:
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p... REGLA SERRUCHO o REGLA DIAGONAL

Distribucion electronica en sistemas polielectronicos


Primero que nada es necesario que te familiarices con la tabla periódica y el por qué los elementos están acomodados en esa forma. La tabla periódica "oficial" de curso es la de Web Elements, ya que está actualizada y además nos da solo la información que necesitamos.


Baja tu tabla de aquí.

Como puedes ver la tabla periódica tiene 7 filas en su estructura principal, éstas corresponden con los 7 niveles de energía en que puede estar un electrón. Es decir, la fila en que se encuentra un elemento dentro de la tabla periódica es un indicativo de los niveles de energía que posee y esto nos será muy útil para encontrar su configuración electrónica.

Además de eso, la tabla periódica contiene 18 columnas, estas columnas corresponden con los subniveles en que se encuentran los electrones de valencia de los elementos, las columnas 8 columnas más altas son llamadasgrupos A y el número de grupo nos dice exactamente el número de electrones de valencia de elemento. Además, los elementos de los grupos A, tienen sus electrones de valencia en el subnivel s (grupos AI y AII) y en elsubnivel b (grupos AIII a AVIII). Las columnas centrales que están un poco más bajas son llamadas grupos B corresponden a los metales de transición y nos indican que estos tienen sus electrones de valencia en el subnivel d, dependiendo de en qué columna estén es el número de electrones que se encuentran en ese subnivel.

En la parte baja de la tabla periódica observamos dos filas que tienen 14 columnas cada una. Estos elementos tienen sus electrones de valencia en elsubnivel f y se les conoce como tierras raras.


Para escribir la configuración electrónica de un elemento seguimos dos principios básicos:


Principio de construcción (Aufbau)


Los electrones van llenando los orbitales según el siguiente diagrama. 







Para el llenado de orbitales se sigue el principio de Hund, que dice que para poder comenzar a aparear los electrones debe haber un electrón en cada uno de los orbitales del subnivel. 

Numeros cuanticos y orbitales atomicos

Mientras que en el modelo de Bohr se hablaba de órbitas definidas en el modelo de Schrödinger sólo podemos hablar de las distribuciones probables para un electrón con cierto nivel de energía. Así para un electrón en el estado fundamental la probabilidad de la distribución se refleja en la siguiente figura, dónde la intensidad del color rojo indica una mayor probabilidad de encontrar al electrón en esa región, o lo que es lo mismo una mayor densidad electrónica.
De la resolución de la ecuación de onda de Schrödinger se obtiene una serie de funciones de onda (ó probabilidades de distribución de los electrones) para los diferentes niveles energéticos que se denominan orbitales atómicos.
La figura anterior representa el orbital de mínima energía del átomo de hidrógeno. Mientras que el modelo de Bohr utilizaba un número cuántico(n) para definir una órbita el modelo de Schrödinger utiliza tres números cuánticos para describir un orbital: n, l y ml . A continuación vemos las características de estos números:
  • Número cuántico principal (n):Representa al nivel de energía (estado estacionario de Bohr) y su valor es un número entero positivo (1, 2, 3, 4, etc) y se le asocia a la idea física del volumen del orbital. Dicho de otra manera el número cuántico principal determina el tamaño de las órbitas, por tanto, la distancia al núcleo de un electrón vendrá determinada por este número cuántico. Todas las órbitas con el mismo número cuántico principal forman una capa. Su valor puede ser cualquier número natural mayor que 0 (1, 2, 3...) y dependiendo de su valor, cada capa recibe como designación una letra. Si el número cuántico principal es 1, la capa se denomina K, si 2 L, si 3 M, si 4 N, si 5 P, etc.
  • Número cuántico secundario (l):Identifica al subnivel de energía del electrón y se le asocia a la forma del orbital. Sus valoresdependen del número cuántico principal "n", es decir, sus valores son todos los enteros entre 0 y (n-1), incluyendo al 0. Ejemplo: n = 4 ; l = 0, 1, 2, 3. Dicho de otra manera, El número cuántico azimutal determina la excentricidad de la órbita, cuanto mayor sea, más excéntrica será, es decir, más aplanada será la elipse que recorre el electrón. Su valor depende del número cuántico principal n, pudiendo variar desde 0 hasta una unidad menos que éste(desde 0 hasta n-1). Así, en la capa K, como n vale 1, l sólo puede tomar el valor 0, correspondiente a una órbita circular. En la capa M, en la que n toma el valor de 3, l tomará los valores de 0, 1 y 2, el primero correspondiente a una órbita circular y los segundos a órbitas cada vez más excéntricas.
  • Número cuántico magnético (m): Describe las orientaciones espaciales de los orbitales. Sus valores son todos los enteros del intervalo (-l,+l) incluyendo el 0.Ejemplo: n = 4l = 0, 1, 2, 3m = -3, -2, -1, 0, +1, +2, +3. Dicho de otra manera, El número cuántico magnético determina la orientación espacial de las órbitas, de las elipses. Su valor dependerá del número de elipses existente y varía desde -l hasta l, pasando por el valor 0. Así, si el valor de l es 2, las órbitas podrán tener 5 orientaciones en el espacio, con los valores de m -2, -1, 0, 1 y 2. Si el número cuántico azimutal es 1, existen tres orientaciones posible (-1, 0 y 1), mientras que si es 0, sólo hay una posible orientación espacial, correspondiente al valor de m 0.
    El conjunto de estos tres números cuánticos determinan la forma y orientación de la órbita que describe el electrón y que se denomina orbital. Según el número cuántico azimutal (l), el orbital recibe un nombre distinto. cuando l = 0, se llama orbital s; si vale 1, se denomina orbital p, cuando 2 d, si su valor es 3, se denomina orbital f, si 4 g, y así sucesivamente. Pero no todas las capa tienen el mismo número de orbitales, el número de orbitales depende de la capa y, por tanto, del número cuántico n. Así, en la capa K, como n = 1, l sólo puede tomar el valor 0 (desde 0 hasta n-1, que es 0) y m también valdrá 0 (su valor varía desde -l hasta l, que en este caso valen ambos 0), así que sólo hay un orbital s, de valores de números cuánticos (1,0,0). En la capa M, en la que n toma el valor 3. El valor de l puede ser 0, 1 y 2. En el primer caso (l = 0), m tomará el valor 0, habrá un orbital s; en el segundo caso (l = 1), m podrá tomar los valores -1, 0 y 1 y existirán 3 orbitales p; en el caso final (l = 2) m tomará los valores -2, -1, 0, 1 y 2, por lo que hay 5 orbitales d. En general, habrá en cada capa n2 orbitales, el primero s, 3 serán p, 5 d, 7 f, etc.

    Número cuántico de espín (s): Describe el giro del electrón en torno a su propio eje
    , en un movimiento de rotación. Este giro puede hacerlo sólo en dos direcciones, opuestas entre sí. Por ello, los valores que puede tomar el número cuántico de spin son -1/2 y +1/2. Dicho de otra manera, Cada electrón, en un orbital, gira sobre si mismo. Este giro puede ser en el mismo sentido que el de su movimiento orbital o en sentido contrario. Este hecho se determina mediante un nuevo número cuántico, el número cuántico se spin s, que puede tomar dos valores, 1/2 y -1/2.
Según el principio de exclusión de Pauli, en un átomo no pueden existir dos electrones con los cuatro números cuánticos iguales, así que en cada orbital sólo podrán colocarse dos electrones (correspondientes a los valores de s +1/2 y -1/2) y en cada capa podrán situarse 2n2 electrones (dos en cada orbital).
Representaciones de los Orbitales
  • Orbitales "s": Los orbitales "s" son esféricamente simétricos.
  • Orbitles "p": La forma de los orbitales p es de dos lóbulos situados en lados opuestos al núcleo. Hay tres tipos de orbitales p ( ; ml= -1,0,1) que difieren en su orientación. No hay una correlación simple entre los tres números cuánticos magnéticos y las tres orientaciones: las direcciones x, y y z. Los orbitales p del nivel n se denominan npx, npy, npz
    Los orbitales p al igual que los s aumentan de tamaño al aumentar el número cuántico principal.
  • Orbitales "d": En el tercer subnivel tenemos 5 orbitales atómicos (para n>3 l =2; ml=-2,-1,0,1,2) con diferentes orientaciones sen el espacio tal y como vemos en la figura :
  • Orbitales "f": Son orbitales de mayor energía. Para n>4 tendremos 7 orbitales f ( =3 y ml=-3,-2,-1,0,1,2,3) . Los orbitales f son importantes para comprender el comportamiento de los elementos con número atómico mayor a 57.
Observaciones:
Para valores de >4 tenemos los orbitales g y subsiguientes (a partir de f sigue el orden alfabético de las consonantes). En química general nos bastará con los orbitales s, p y d para comprender las propiedades de los elementos.
Las energías de los orbitales atómicos
En el modelo de Bohr la energía de un electrón dependía únicamente del número cuántico principal. Lo mismo ocurre en la descripción de los orbitales atómicos en mecánica cuántica para el átomo de hidrógeno.
Para átomos con más de un electrón (polielectrónicos) los orbitales atómicos tienen la misma forma que los orbitales del átomo de hidrógeno, pero la presencia de más de un electrón afecta a los niveles de energía de los orbitales (debido a la repulsión entre dos electrones).
Así por ejemplo el orbital 2s tienen un valor de energía menor que los orbitales 2p para átomos con más de un electrón:
Por lo tanto, la combinación de n y l describe a un orbital que es la región del espacio en la que es más probable encontrar al electrón y en la cual tiene una cantidad específica de energía. El valor que tome el número cuántico secundario (l) determina el tipo de orbital:
Cuadro que resume los orbitales que hay en cada nivel de energía y la capacidad máxima de electrones que pueden contener los niveles y subniveles de energía.

Significado fisico de la funcion de onda

SIGNIFICADO FISICO DE LA FUNCIÓN DE LA ONDA   Ψ²
La función de onda no implica que una partícula sea exactamente un aglomerado o paquete de ondas   sino esta tiene que ver con la probabilidad de la posición de una partícula que esta dada por las funciones de ondas.
Con la cual podemos calcular la probabilidad De si la partícula   existe en dicho espacio.
Esta interpretación probabilística de la función de onda es formulada y propuesta por Bohr y es uno de los fundamentos de la mecánica cuántica. 

El valor de   la función de una onda   asociado   con una partícula   en movimiento esta relacionado   con la   probabilidad   de encontrar la partícula en el mundo   (x, y, z, en el instante de tiempo (t)) 
Por ejemplo:
En el campo eléctrico   de una onda electro magnética   una probabilidad negativa   o compleja   es algo sin sentir esto significa que   la función de onda no va poder ser observada.
Sin embargo el modulo   de la función de onda   siempre es real y positivo (x) esto sele conoce como la   densidad de probabilidad, ahora si podemos   dar una interpretación física sobre este tema que   es la probabilidad de encontrar una partícula   en el punto x, y, z. en el instante (t). que es proporcional al cuadrado 
De su función de onda /Ψ/² . 

La función de onda presenta amplitud positiva   y negativa   aunque estos signos de la amplitud   no tienen un significado directo   si resulta de gran importancia cuando las funciones de onda se pueden   relacionar.
Tenemos dos partículas   y cada una tiene sus funciones de onda. como podemos   ver las funciones de onda van a interaccionar   en este caso   la parte positiva de las funciones   se suman   originando un aumento de amplitud y se conoce este fenómeno   como   interferencia constructiva. 
(ambas ondas deben ser positivas) 

Si las ondas   presentan signos contrarios , la parte positiva será anulada por la parte negativa   dando lugar a un fenómeno llamado interferencia destructiva

Ecuacion de onda de Schrödinger


La ecuación de Schrödinger fue desarrollada por el físico austríaco Erwin Schrödinger en 1925. Describe la evolución temporal de una partícula masiva no relativista. Es de importancia central en la teoría de la mecánica cuántica, donde representa para las partículas microscópicas un papel análogo a la segunda ley de Newton en la mecánica clásica. Las partículas microscópicas incluyen a las partículas elementales, tales como electrones, así como sistemas de partículas, tales como núcleos atómicos.

Nacimiento de la ecuación

[editar]Contexto histórico

Al comienzo del siglo XX se había comprobado que la luz presentaba una dualidad onda corpúsculo, es decir, la luz se podía manifestar (según las circunstancias) como partícula (fotón en el efecto fotoeléctrico), o como onda electromagnética en la interferencia luminosa. En 1923 Louis-Victor de Broglie propuso generalizar esta dualidad a todas las partículas conocidas. Propuso la hipótesis, paradójica en su momento, de que a toda partícula clásica microscópica se le puede asignar una onda, lo cual se comprobó experimentalmente en 1927 cuando se observó la difracción de electrones. Por analogía con los fotones, De Broglie asocia a cadapartícula libre con energía E y cantidad de movimiento p una frecuencia \nu y una longitud de onda \lambda:
\left\{\begin{matrix}E=h\nu\\p=h/\lambda\end{matrix}\right.
La comprobación experimental hecha por Clinton Davisson y Lester Germer mostró que la longitud de onda asociada a los electrones medida en la difracción según la fórmula de Bragg se correspondía con la longitud de onda predicha por la fórmula de De Broglie.
Esa predicción llevó a Schrödinger a tratar de escribir una ecuación para la onda asociada de De Broglie que para escalas macroscópicas se redujera a la ecuación de la mecánica clásica de la partícula. La energía mecánica total clásica es:
 E = {p^2\over 2m}+ V(r)
El éxito de la ecuación, deducida de esta expresión utilizando el principio de correspondencia, fue inmediato por la evaluación de los niveles cuantificados de energía del electrón en el átomo de hidrógeno, pues ello permitía explicar el espectro de emisión del hidrógeno:series de LymanBalmerBracketPaschenPfund, etc.
La interpretación física correcta de la función de onda de Schrödinger fue dada en 1926 por Max Born. En razón del carácter probabilista que se introducía, la mecánica ondulatoria de Schrödinger suscitó inicialmente la desconfianza de algunos físicos de renombre como Albert Einstein, para quien «Dios no juega a los dados» y del propio Schrödinger.

[editar]La derivación histórica

El esquema conceptual utilizado por Schrödinger para derivar su ecuación reposa sobre una analogía formal entre la óptica y la mecánica:
  • En la óptica ondulatoria, la ecuación de propagación en un medio transparente de índice real n variando lentamente a la escala de la longitud de onda conduce —mientras se busca una solución monocromática donde la amplitud varía muy lentamente ante la fase— a una ecuación aproximada denominada eikonal. Es la aproximación de la óptica geométrica, a la cual está asociada el principio variacional de Fermat.
  • En la formulación hamiltoniana de la mecánica clásica, existe una ecuación de Hamilton-Jacobi (que en última instancia es equivalente a las leyes de Newton). Para una partícula masiva no relativista sometida a una fuerza que deriva de una energía potencial, la energía mecánica total es constante y la ecuación de Hamilton-Jacobi para la ”función característica de Hamilton” se parece formalmente a la ecuación de la eikonal (el principio variacional asociado es el principio de mínima acción.)
Este paralelismo lo había notado ya Hamilton en 1834, pero el no tenía una razón para dudar de la validez de la mecánica clásica. Después de la hipótesis de De Broglie de 1923, Schrödinger dice:1 la ecuación de la eikonal siendo una aproximación a la ecuación de onda de la óptica ondulatoria, buscamos la ecuación de onda de la "mecánica ondulatoria" (a realizar) donde la aproximación será la ecuación de Hamilton-Jacobi. Lo que falta, primero para una onda estacionaria (E = cte), después para una onda de cualquier tipo.2
Schrödinger había en efecto comenzado por tratar el caso de una partícula relativista —como de Broglie antes que él—.3 Entonces había obtenido la ecuación conocida hoy día con el nombre de Klein-Gordon, pero su aplicación al caso del potencial eléctrico del átomo de hidrógeno daba unos niveles de energía incompatibles con los resultados experimentales.4 Ello hará que se concentre sobre el caso no-relativista, con el éxito conocido.

2 Principio de incertidumbre de Heisenberg


En mecánica cuántica, la relación de indeterminación de Heisenberg o principio de incertidumbre establece la imposibilidad de que determinados pares de magnitudes físicas sean conocidas con precisión arbitraria. Sucintamente, afirma que no se puede determinar, en términos de la física clásica, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, por ejemplo, la posición y el momento lineal (cantidad de movimiento) de un objeto dado. En otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su cantidad de movimiento lineal y, por tanto, su velocidad. Esto implica que las partículas, en su movimiento, no tienen asociada una trayectoria definida como lo tienen en la física newtoniana. Este principio fue enunciado por Werner Heisenberg en 1927.
El principio de indeterminación no tiene un análogo clásico y define una de las diferencias fundamentales entre física clásica y física cuántica. Desde un punto de vista lógico es una consecuencia de axiomas corrientes de la mecánica cuántica y por tanto estrictamente se deduce de los mismos.

Explicación cualitativa del principio de incertidumbre

La explicación "divulgativa" tradicional del principio de incertidumbre afirma que las variables dinámicas como posiciónmomento angularmomento lineal, etc. se definen de manera operacional, esto es, en términos relativos al procedimiento experimental por medio del cual son medidas: la posición se definirá con respecto a un sistema de referencia determinado, definiendo el instrumento de medida empleado y el modo en que tal instrumento se usa (por ejemplo, midiendo con una regla la distancia que hay de tal punto a la referencia).
Sin embargo, cuando se examinan los procedimientos experimentales por medio de los cuales podrían medirse tales variables en microfísica, resulta que la medida siempre acabará perturbando el propio sistema de medición. En efecto, si por ejemplo pensamos en lo que sería la medida de la posición y velocidad de un electrón, para realizar la medida (para poder "ver" de algún modo el electrón) es necesario que un fotón de luz choque con el electrón, con lo cual está modificando su posición y velocidad; es decir, por el mismo hecho de realizar la medida, el experimentador modifica los datos de algún modo, introduciendo un error que es imposible de reducir a cero, por muy perfectos que sean nuestros instrumentos.
Esta descripción cualitativa del principio, sin ser totalmente incorrecta, es engañosa en tanto que omite el principal aspecto del principio de incertidumbre: el principio de incertidumbre establece un límite más allá del cuál los conceptos de la física clásica no se pueden emplear. La física clásica concibe sistemas físicos descritos por medio de variables perfectamente definidas en el tiempo (velocidad, posición,...) y que en principio pueden conocerse con la precisión que se desee. Aunque en la práctica resultara imposible determinar la posición de una partícula con una precisión infinitesimal, la física clásica concibe tal precisión como alcanzable: es posible y perfectamente concebible afirmar que tal o cual partícula, en el instante de tiempo exacto 2 s, estaba en la posición exacta 1,57 m. En cambio, el principio de incertidumbre, al afirmar que existe un límite fundamental a la precisión de la medida, en realidad está indicando que si un sistema físico real se describe en términos de la física clásica, entonces se está haciendo una aproximación, y la relación de incertidumbre nos indica la calidad de esa aproximación.
Por motivos culturales y educativos, las personas se suelen enfrentar al principio de incertidumbre por primera vez estando condicionadas por el determinismo de la física clásica. En ella, la posición x de una partícula puede ser definida como una función continua en el tiempo, x=x(t). Si la masa de esa partícula es m y se mueve a velocidades suficientemente inferiores a la de la luz, entonces el momento lineal de la partícula se define como masa por velocidad, siendo la velocidad la primera derivada en el tiempo de la posición:  p=m \frac{dx}{dt}.
Dicho esto, atendiendo a la explicación habitual del principio de incertidumbre, podría resultar tentador creer que la relación de incertidumbre simplemente establece una limitación sobre nuestra capacidad de medida que nos impide conocer con precisión arbitraria la posición inicial  x(0)  y el momento lineal inicial  p(0)  . Ocurre que si pudiéramos conocer  x(0)  y  p(0)  , entonces la física clásica nos ofrecería la posición y la velocidad de la partícula en cualquier otro instante; la solución general de las ecuaciones de movimiento dependerá invariablemente de  x(0)  y  p(0)  . Esto es, resolver las ecuaciones del movimiento lleva a una familia o conjunto de trayectorias dependientes de  x(0)  y  p(0)  ; según qué valor tomen  x(0)  y  p(0)  , se tendrá una trayectoria dentro de esa familia u otra, pero la propia resolución de las ecuaciones limita el número de trayectorias a un conjunto determinado de ellas. Según se ha razonado, de acuerdo con el principio de incertidumbre  x(0)  y  p(0)  no se pueden conocer exactamente, así que tampoco podrán conocerse  x(t)  y  p(t)  en cualquier otro instante con una precisión arbitraria, y la trayectoria que seguirá la partícula no podrá conocerse de manera absolutamente exacta. Este razonamiento es, sin embargo, incorrecto, pues en él subyace la idea de que, pese a que  x(0)  y  p(0)  no se pueden conocer exactamente, es posible continuar usando la descripción clásica en virtud de la cual una partícula seguirá una trayectoria definida por la solución general de las ecuaciones de movimiento, introduciendo la noción añadida de que las condiciones iniciales  x(0)  y  p(0)  no pueden conocerse al detalle: esto es, no podemos conocer exactamente qué trayectoria va a seguir la partícula, pero estaremos aceptando que, de facto, va a seguir una.
Esta forma de proceder es, sin embargo, totalmente incorrecta: el principio de incertidumbre conlleva un desvío completo de las concepciones clásicas, haciendo que la noción clásica de trayectoria debe ser desechada: preguntar cuáles son simultáneamente los valores de  x(t)  y  p(t)  es un absurdo. Así dicho, podría resultar paradójico que primero se establezca una relación de incertidumbre en términos de posición  x  y momento lineal  p  , para luego afirmar que  x  y  p  , que aparecen en dicha relación, no tienen sentido: si no tienen sentido, ¿qué sentido puede tener una relación que las emplee? Ocurre que, en física cuántica, es posible introducir una serie de entidades matemáticas  x  y  p  que se correspondan en muchos aspectos con la posición y el momento clásicos. Dichas entidades no son, no obstante, exactamente iguales a la posición y el momento clásicos: el principio de incertidumbre sencillamente indica que si interpretamos esas entidades como posición y momento lineal -y por tanto interpretamos el movimiento de una forma clásica-, entonces existe un límite fundamental en la precisión con que dichas variables pueden ser conocidas; esto es, si intentamos introducir variables clásicas e intentamos interpretar el movimiento de forma clásica, la precisión con que estas variables pueden ser especificadas está limitada.